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Abstract In the rough phase, the width of interfaces separating different phases of statistical
systems increases logarithmically with the system size. This phenomenon is commonly de-
scribed in terms of the capillary wave model, which deals with fluctuating, infinitely thin
membranes, requiring ad hoc cut-offs in momentum space. We investigate the interface
roughening in a unified approach, which does not rely on joining different models, namely
in the framework of the Landau-Ginzburg model, that is renormalized field theory, in the
one-loop approximation. The interface profile and width are calculated analytically, result-
ing in finite expressions with definite coefficients. They are valid in the scaling region and
depend on the known renormalized coupling constant.

Keywords Interfaces · Field theory

1 Introduction

Interface roughening is a phenomenon which has attracted interest of experimental and the-
oretical investigators, see e.g. [1–8], since its discovery [9]. It is displayed by interfaces,
separating different coexisting phases or substances of a system of statistical physics, in a
range of temperatures TR < T < Tc between the roughening temperature TR and the critical
temperature Tc . Roughening manifests itself in a characteristic dependence of the interface
width on the system size. For an interface of diameter L the width increases logarithmically
with L in the rough phase, whereas it remains constant of the order of the correlation length
ξ for temperatures below TR .

This effect is commonly described theoretically in terms of the capillary wave model or
drumhead model [9]. In this model the interface is represented in an idealized way by an
infinitely thin fluctuating membrane, so that the instantaneous microscopic interface profile
is a sharp step function between the two phases. Nevertheless, in the thermal average the
capillary wave fluctuations produce a continuous density profile with a finite width w, which
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can be shown to be given by an integral over all wave-numbers of the fluctuations, which is
essentially of the form

w2 = 1

2πσ

∫ kmax

kmin

dk kD−4, (1)

where D is the number of dimensions of space and σ is the interface tension. A natural
lower limit on the wave numbers is given by the system size,

kmin = const.

L
. (2)

In order to avoid the divergence of the integral, an upper cut-off kmax has to be introduced.
As there should be no waves with wavelength smaller than the intrinsic width of the physical
interface, the upper cut-off is taken to be of the order of the inverse correlation length. In the
case of D = 3, considered here, one obtains

w2 = 1

2πσ
ln

L

cξ
(3)

with an unknown constant c. The logarithmic increase with L is due to the contribution of
capillary waves with long wavelengths near the system size L.

Complementary to the capillary wave model is the mean field description of interfaces.
In mean field theory and its field theoretic refinements, interfaces possess an intrinsic contin-
uous profile with a well-defined width, which is proportional to the bulk correlation length
and does not depend on the system size.

Mean field and capillary wave theory can be combined in the “convolution approxima-
tion” [10, 11]. In this picture the intrinsic profile describes the interface on a microscopic
scale of the order of the correlation length, while capillary wave theory describes the macro-
scopic interface fluctuations of wavelengths much larger than the correlation length. The
intrinsic profile is thus centered around a two-dimensional surface subject to capillary wave
fluctuations. In the convolution approximation the square of the resulting total interface
width is obtained as a sum of the intrinsic part and the capillary wave contribution,

w2 = c1ξ
2 + 1

2πσ
ln

L

c2ξ
. (4)

The description of rough interfaces by means of the capillary wave model and the con-
volution approximation is unsatisfactory for different reasons. First of all, it has so far not
been possible to define the concept of an intrinsic interface profile and width unambigu-
ously outside a given theory. In experiments or Monte Carlo simulations of systems with
interfaces, the observed interface profile and width are the total ones, including the effects
of the intrinsic structure as well as of the capillary waves, and there is no clear way to sepa-
rate the intrinsic structure from the effects of capillary waves. Secondly, the models sketched
above contain ad hoc constants, whose numerical values are arbitrary and cannot be fixed
unambiguously within the models.

In this article we investigate the profile and width of rough interfaces in a coherent ap-
proach. Statistical systems with coexisting phases, separated by interfaces, are described in
the framework of the field theoretic version of the Landau-Ginzburg model, including fluc-
tuations on all length scales. No cut-off on wave-numbers is introduced. For explicit calcula-
tions we employ the one-loop approximation. It should be noted, however, that an extension
to arbitrary higher loop orders is possible in principle. The interface profile, resulting from
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the calculation, shows the expected logarithmic broadening with the system size L. We ob-
tain analytical results for the numerical coefficients, which are fixed unambiguously in this
approach.

Interfaces have been studied before in the framework of field theory by other authors.
In [12, 13] the profile is calculated to first order in the ε-expansion, where D = 4 − ε and
an extrapolation to ε = 1 is necessary. The ε-expansion is an expansion around the four-
dimensional case. As can be seen from (1), in four dimensions the contribution of long-
wavelength modes converges and no roughening is present. This has the consequence that
within the ε-expansion, even after extrapolation to D = 3 dimensions, roughening effects
do not show up, as is well known. The calculation of [12] is extended to include the effects
of an external field in [14].

Our calculations are performed in D = 3 physical dimensions in contrast to the ε-
expansion. The three-dimensional approach is based on a systematic expansion in a dimen-
sionless coupling [15, 16]. Ultraviolet divergences are treated by dimensional regularization
(D = 3 − ε), which does not vitiate the fact that the results for physical quantities strictly
refer to D = 3 dimensions. This is also seen explicitly by the fact that the calculation re-
veals the typical roughening effects. Renormalization of the three-dimensional field theory
is performed in the scheme used in [17] to two-loop order, employing the results of [18, 19].

We consider systems with short-ranged interactions in a semi-infinite L × L × ∞ geom-
etry. In such a geometry there is no phase transition and the correlation length does not
diverge. The application of field theory to such systems has been founded in [20] and is
well-established in the study of finite size effects, see e.g. [21], chap. 37.

A three-dimensional study has previously been done in [22], where the interface profile
is considered in D = 3 dimensions at one-loop order in the presence of an external gravita-
tional field. A functional form of the profile is given, including capillary wave effects. The
dependence on the system size is, however, not considered. We shall compare our results
with the ones of [22] below.

2 Interfaces in Field Theory

In the framework of field theory, the system under consideration, possessing interfaces, is
described by an order parameter field φ(x) representing the difference between the concen-
trations of the two coexisting phases. The physics of the system is governed by the Landau-
Ginzburg Hamiltonian [23]

H [φ] =
∫

d3xH(φ(x)) (5)

with the Hamiltonian density

H(φ) = 1

2
∂μφ∂μφ + V0(φ). (6)

In the situation with interfaces the potential is of the double-well type,

V0(φ) = g0

4!
(
φ2 − v2

0

)2
. (7)

Mean field theory amounts to the classical approximation where fluctuations are ne-
glected. The minima of the potential then correspond to the two homogeneous phases. The
mean field correlation length ξ0 is defined through the second moment of the correlation
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function in the mean field approximation. It is given by the second derivative of the poten-
tial in its minima:

ξ 2
0 = (V ′′

0 (v0))
−1 = 3

g0v
2
0

. (8)

With the bare mass m0, defined by

m0 = 1

ξ0
, (9)

the Hamiltonian density can be written as

H(φ) = 1

2
∂μφ∂μφ − m2

0

4
φ2 + g0

4! φ
4 + 3

8

m4
0

g0
. (10)

The simplest description of interfaces is also based on mean field theory [24]. In this
approximation the interface profile is given by minimization of the Hamiltonian H with
boundary conditions appropriate for an interface. The corresponding field equation

δH

δφ(x)
= 0 (11)

leads to the differential equation

	φ − V ′
0(φ) = 0. (12)

In this article we consider a system in a L × L × ∞ geometry. The field φ obeys periodic
boundary conditions in the two lateral directions. If we choose the interface to be perpen-
dicular to the infinite z-axis, we find the typical hyperbolic tangent profile [25]

φ
(z0)

0 (z) = v0 tanh

(
z − z0

2ξ0

)
. (13)

Its width is proportional to the mean field correlation length ξ0. The parameter z0 specifies
the location of the interface.

Essential for a field theoretic treatment, as being considered in this article, are correc-
tions to mean field theory coming from fluctuations of the order parameter field. They can
be calculated systematically in renormalized perturbation theory. The fluctuations result in
different modifications of the mean field result, as will be considered in detail below. First of
all, higher order corrections change the form of the profile from the tanh-function to a dif-
ferent function. Secondly, renormalization of the parameters v0 and ξ0 becomes necessary
and, as a result, the mean field correlation length ξ0 is replaced by the physical correlation
length ξ , which diverges near the critical point with a characteristic exponent ν. Finally,
long-wavelength fluctuations lead to the roughening phenomenon, which implies a broad-
ening of the interface, such that its width depends logarithmically on the system size and
diverges in the limit of an infinite system.

The partition function for the system with an interface can be written as a functional
integral of the form

Z =
∫

Dϕ exp(−H [φ0 + ϕ]), (14)
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where φ0(z) is a classical interface solution as given above and ϕ(x) denotes the fluctuations
around it. The Hamiltonian density, expressed in terms of ϕ, reads

H(φ0 + ϕ) = H(φ0) + 1

2
ϕ(x)Kϕ(x) + g0

3! φ0(x)ϕ3(x) + g0

4! ϕ
4(x). (15)

Here the operator K is given by

K = −	 − m2
0

2
+ g0

2
φ2

0(x), (16)

where 	 is the Laplacian.
In the loop expansion the quadratic terms in H are treated by means of Gaussian func-

tional integrals, and the higher order terms are taken into account by Taylor expansions.
The spectrum of K is known analytically [26]. We have to employ it for our calculation

and give details below. At this point we would like to draw the attention to the fact that K

has a single zero mode

Kψ(x) = 0. (17)

The zero mode of the fluctuation operator is directly related to translations of the interface,
as parameterized by the parameter z0. For every value of this parameter, the function φ

(z0)

0
is a solution of the classical field equation. This implies that

ψ(z) = dφ
(z0)

0 (z)

dz0
(18)

is a zero mode of K .
The existence of a zero mode requires to treat the corresponding fluctuations, which are

proportional to ψ , separately from the remaining Gaussian integrals in the functional inte-
grals. This is done by the method of collective coordinates [27]. The collective coordinate
in question is z0. In the Gaussian integral it is set to an arbitrary value, which we choose
to be z0 = 0, and the fluctuations are restricted to the space N⊥ of functions orthogonal to
the zero mode ψ . The inner product in the Hilbert space of functions, on which K acts, is
(χ,ϕ) = ∫

d3xχ(x)∗ϕ(x). Since the zero mode ψ is real, the orthogonality condition is

∫
d3xψ(x)ϕ(x) = 0. (19)

When expectation values in the presence of an interface are calculated, integration over z0

would imply averaging over all translations of the interface, leading to translationally invari-
ant results. In case of the interface profile, however, this is obviously not appropriate, since
one is interested in the profile function relative to the position of the interface. Therefore
integration over z0 has to be omitted, leaving us with Gaussian integrals over N⊥. So the
interface profile is given by

φc(x) = φ0(x) + φf (x) (20)

with

φf (x) = 〈ϕ(x)〉 = 1

Z′

∫
N⊥

Dϕϕ(x) exp(−H [φ0 + ϕ]). (21)
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3 The Profile Equation

For functional integrals over the fluctuation field ϕ ∈ N⊥ Feynman rules can be set up anal-
ogously to the usual case. The propagator and vertices can be read off the Hamiltonian (15).
The propagator is the inverse of the fluctuation operator restricted to N⊥:

K ′ = K|N⊥ . (22)

There are three-point and four-point vertices, given by

= −g0φ0(z), = −g0.

The fluctuation part the interface profile gets contributions from all orders of the loop
expansion:

φf (x) = φ1(x) + φ2(x) + · · · . (23)

In the one-loop approximation, which we employ, the Feynman diagram contributing to the
profile function

leads to

φ1(x) = −g0

2

∫
d3x ′K ′−1(x, x ′)K ′−1(x ′, x ′)φ0(x

′). (24)

Here the kernel of the inverse operator K ′−1 enters. It would be possible to calculate φ1 from
this expression. It is, however, more convenient to obtain it as a solution of a differential
equation. Acting with the operator K on (24), we obtain the profile equation

Kφ1(x) + g0

2
K ′−1(x, x)φ0(x) = 0. (25)

In order to solve this equation we need the explicit form of K ′−1(x, x), which is discussed
below.

An alternative derivation of the profile equation is based on the so-called effective action
�[�], which is a functional of a field �(x). �[�] is obtained by Legendre transformation
from the free energy in the presence of a non-constant external field. For constant � the
effective action reduces to the Gibbs potential. For a definition and discussion see e.g. [28].
Calculating �[�] in the one-loop approximation and finding the interface profile φ(x) as a
stationary point of �,

δ�

δ�(x)
= 0, (26)

again leads to (25).
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4 Solution of the Profile Equation

The inverse of the fluctuation operator K ′ at coinciding arguments, which enters the profile
equation, can be obtained by means of the spectral representation. K is the sum of the
negative two-dimensional Laplacian and a one-dimensional Schrödinger operator K̃ ,

K = −	(2) + K̃, (27)

where

K̃ = −∂2
z + m2

0 − 3m2
0

2
sech2

(
m0

2
z

)
. (28)

The negative Laplacian on the L × L square has eigenvalues

k2 with 	k = 2π

L
	n, 	n ∈ Z

2, (29)

and corresponding eigenfunctions

ϕ	n(	x) = L−1 ei 2π
L

	n·	x, 	x ∈ [0,L]2. (30)

The spectrum of K̃ is known exactly [26]. It consists of two discrete eigenvalues

ω(0) = 0, ψ0(z) =
√

3m0

8
sech2

(
m0

2
z

)
, (31)

ω(1) = 3

4
m2

0, ψ1(z) =
√

3m0

4
tanh

(
m0

2
z

)
sech

(
m0

2
z

)
, (32)

and a continuum

ωp = m2
0 + p2 with p ∈ R, (33)

ψωp(z) = Npeipz

[
2p2 + m2

0

2
− 3

2
m2

0 tanh2

(
m0

2
z

)
+ 3im0p tanh

(
m0

2
z

)]
(34)

with the normalization factor

Np = (2π(4p4 + 5m2
0p

2 + m4
0))

− 1
2 . (35)

The spectrum of K is thus given by

λ	nω = 4π2

L2
n2 + ω, �	nω(x) = ϕ	n(	x)ψω(z), (36)

where ω runs through the eigenvalues of K̃ . The zero mode, discussed above, is represented
by �	00.

In terms of the spectrum we write

K ′−1(x, x) =
∑∫

λ

ψλ(x)ψ∗
λ (x)

1

λ
. (37)
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Inserting the explicit expressions, we obtain

K ′−1(x, x) = C0 + (C1 − C2 + C4) sech4

(
m0

2
z

)
+ (C2 + C3) sech2

(
m0

2
z

)
, (38)

where the coefficients Ci are

C0 = 1

2π

∫
dp

∑
	n

1

4π2n2 + (m2
0 + p2)L2

, (39)

C1 = 3m0

8

∑
	n
=	0

1

4π2n2
, (40)

C2 = 3m0

4

∑
	n

1

4π2n2 + 3
4m2

0L
2
, (41)

C3 = −3m2
0

∫
dpN 2

p

∑
	n

m2
0 + p2

4π2n2 + (m2
0 + p2)L2

, (42)

C4 = 9

4
m4

0

∫
dpN 2

p

∑
	n

1

4π2n2 + (m2
0 + p2)L2

. (43)

These expressions are divergent and have to be regularized, as discussed below.
With the explicit form of K ′−1(x, x) at hand, the solution of the profile equation is found

as

φ1(z) = g0v0

2m2
0

{
C0 tanh

(
m0

2
z

)

−
[

2

3
(C1 − C2 + C4) tanh

(
m0

2
z

)

− (C0 + C2 + C3)
m0

2
z

]
sech2

(
m0

2
z

)}
. (44)

Written in this way, the expression for the profile contains the divergent coefficients Ci as
well as the bare parameters g0, m0 and v0. In order to arrive at a finite expression in terms
of physical parameters, renormalization has to be performed.

The divergences have to be treated in some regularization scheme. We choose to employ
dimensional regularization in D = 3 − ε dimensions. It should be noted that this does not
amount to an ε-expansion, since after renormalization ε is sent to zero, whereas in the ε-
expansion one has D = 4 − ε and the results have to be extrapolated to ε = 1. So our use
of dimensional regularization does not vitiate the fact that the results for physical quantities
strictly refer to D = 3 dimensions. Using other regularization schemes, like Pauli-Villars,
would lead to the same final results.

We adopt the renormalization scheme used in [17] to one-loop order. The renormalized
mass mR = 1/ξ is equal to the inverse correlation length ξ , which in turn is defined through
the second moment of the correlation function. The field φ and its expectation value v are
renormalized according to

φR(x) = 1√
ZR

φ(x), vR = 1√
ZR

v, (45)
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where ZR is the usual field renormalization factor. The renormalized coupling is specified
as in [29] through

gR = 3m2
R

v2
R

. (46)

In addition we define a dimensionless renormalized coupling according to

uR = gR

m4−D
R

. (47)

Employing the relations given in [18, 19], the bare quantities m0 and g0 are expressed in
terms of their renormalized counterparts.

The coefficients Ci are evaluated in the same scheme. Leaving out the lengthy details
[30], we quote the results

C0 = −m0

4π
, (48)

C2 + C3 = 3m0

16π
ln 3, (49)

C1 − C2 + C4 = 3m0

16π
(−α + ln(m0L)), (50)

with

α = ln

(
3�2(1/4)

2
√

π

)
− γ ≈ 1.832, (51)

where γ ≈ 0.577 is Euler’s constant.
The coefficients Ci contain additional terms decaying exponentially fast with L, which

we neglect here.
Inserting everything into the expression for the interface profile yields the renormalized

interface profile φR(z) depending on the parameters mR and uR . In this expression the di-
vergences are cancelled, as they should. Expanding consistently in powers of uR up to the
first order, we obtain

φR(z) = vR

{
tanh

(
mR

2
z

)

+ uR

16π
(α − ln(mRL)) tanh

(
mR

2
z

)
sech2

(
mR

2
z

)

− uR

32π

(
3 ln 3 − 13

4

)
mR

2
z sech2

(
mR

2
z

)}
, (52)

which is the central result of this article. Asymptotically, for |z| → ∞, the profile approaches
the bulk expectation value ±vR , corresponding to the pure phases of the system, as it should
be. Note that the profile depends logarithmically on the system size L, revealing the ef-
fect of capillary wave fluctuations. It is this term, depending on mRL, which represents the
deviation from the Fisk-Widom [31] scaling form φ(mRz).

In principle the calculation can be extended to arbitrary high orders in the expansion.
Due to the complexity of higher-loop calculations in non-homogeneous backgrounds, no
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Fig. 1 The renormalized
interface profile for different
system sizes at a coupling of
uR = 14.3

such calculation exists in the literature, with the exception of [32]. In this related calculation
the two-loop contributions turned out to be small.

In order to illustrate the characteristics of the interface profile, we have to specify a
numerical value for the dimensionless renormalized coupling uR . In the vicinity of the crit-
ical point the coupling varies only slowly and is close to the universal fixed point value
u∗

R = 14.3(1), see [33] for a discussion of numerical and field-theoretical estimates. There-
fore we take uR = 14.3 in the plot. The interface profile according to (52) is displayed in
Fig. 1 for different values of mRL.

For L larger than 205ξ the profile is no longer a monotonic function of z. In this region
the one-loop contribution approaches values of the size of the leading order term and the
one-loop approximation reaches its limit of validity.

A three-dimensional calculation of the interface profile by field theoretical methods has
been performed previously by Jasnow and Rudnick [22] in the one-loop approximation.
They do not consider systems of a finite extent L, but use an external gravitational field in
order to control capillary wave fluctuations.

Their result for the interface profile has the functional form of (52), with coefficients that
are given numerically. In place of our term

− uR

16π
ln(mRL) tanh

(
mR

2
z

)
sech2

(
mR

2
z

)
(53)

they get

c3 ln(h) tanh

(
mR

2
z

)
sech2

(
mR

2
z

)
, (54)

where h is the external field, and c3 = 0.109975. As this term originates from long-
wavelength fluctuations, its coefficient can be expected to correspond to ours. For a compar-
ison one has to take into account that h corresponds to L−2 [1]. Also, they use an estimate
of the fixed point value of the coupling which is slightly different from ours. In view of this,
the numerical coefficient c3 is in rough agreement with our result.

The coefficients of the other terms are different from ours. We do not know, whether
there is reason to expect them to be the same.
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5 Interface Width

There are various ways to define the width w of an interface, see e.g. Refs. [10], [9] and
[34]. A suitable choice is

w2 = 〈z2〉 =
∫

dzz2p(z), (55)

where the weight p(z) is taken to be proportional to the square of the gradient of the profile,

p(z) ∝ (∂zφR(z))2, (56)

and to be normalized: ∫
dzp(z) = 1. (57)

In the evaluation of w2 it should be observed that the occurring terms have to be expanded
consistently in powers of the coupling. For example, in the one-loop approximation, the
square of the gradient ∂zφ = ∂zφ0 + ∂zφ1 is to be taken as

(∂zφ)2 = (∂zφ0)
2 + 2∂zφ0∂zφ1 +O(u2

R). (58)

With the interface profile given above, we obtain

w2 = b

m2
R

+ 3uR

20πm2
R

ln(mRL) (59)

with

b = π2 − 6

3
− uR

16π

[
12

5
α − (π2 − 6)

(
ln 3 − 13

12

)]
. (60)

The interface width grows logarithmically with the system size. So the field theoretic
calculation in the one-loop approximation confirms the prediction of capillary wave theory.
Our result, however, does not rely on the capillary wave approximation, but comes from
taking into account fluctuations of the density profile on all scales. Moreover, the numerical
coefficients are fixed unambiguously and do not depend on ad hoc cut-offs.

For a direct comparison with the convolution approximation another definition of the
interface width is more convenient, namely choosing

p(z) = (2vR)−1∂zφR(z), (61)

which is meaningful as long as the profile function is monotonic. For this choice, in the
convolution approximation the squared width w̃2 of the interface equals the sum of the
intrinsic and the capillary wave contributions, see (4).

With this definition of the interface width, our result reads

w̃2 = a

m2
R

+ uR

4πm2
R

ln(mRL), (62)

with

a = π2

3
− uR

16π

{
4α − π2

(
ln 3 − 13

12

)}
= 1.249. (63)
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By noting that for the interface tension we have [17]

1

σ
= uR

2m2
R

+O(u2
R), (64)

we see that the L-dependent term is in agreement with the prediction (3) from the capillary
wave model.

The L-independent term a contains the classical mean field value

a0 = π2

3
, (65)

see [37], plus corrections, which are undetermined in the convolution approximation.
For both choices of the weight function p(z), the one-loop approximation ceases to be

valid, if L gets so large that p(z) becomes negative. This happens for L ≈ 200ξ , which
coincides with the value, where the profile begins to be non-monotonic.

Interfaces have been investigated in the three-dimensional Ising model by means of
Monte Carlo calculations in [34–37]. To observe roughening in Monte Carlo is delicate,
nevertheless in the simulations the L-dependent logarithmic term could be observed and the
results for its numerical coefficient are in good agreement with (3). The present Monte Carlo
estimates for the offset a are, however, rather inaccurate. The data amount to a = 2.68 [35],
a = 0.76 [34], a = 3.44 [36] and a = 0.08 [37]. In view of the spread of these numbers,
and in view of the fact that higher-loop contributions will change our estimate, we can only
notice that the order of magnitude is compatible with our result. It would be desirable to
obtain more precise results from numerical simulations.

Concerning the comparison with experimental data, it should be noted that the dominant
effect in the deviation from the Fisk-Widom scaling form is the presence of the gravita-
tional field. Therefore the available experiments concentrate on this effect, see e.g. [4] and
references therein. In such a situation the dependence of the interface width on the size L

has so far not been identified. Probably this would require experiments under micro-gravity
conditions.

6 Conclusion

Field theory, in the form of the Landau-Ginzburg model, including thermal fluctuations on
all length scales, allows to determine the interface profile and interface width for models in
the Ising universality class in the critical region. For a system possessing a square interface
of size L × L we derived the conditional equation for the interface profile in the one-loop
approximation. We obtained its solution in analytical form. When it is expressed in terms of
physical, renormalized parameters, no divergences occur, and there is no need to introduce
ad hoc cut-offs as in the capillary wave model.

The solution displays the characteristics of roughening by depending logarithmically on
the size L. The interface width grows logarithmically with increasing system size. The coef-
ficient of the logarithmic term is in agreement with the corresponding, cut-off independent
part of the capillary wave model, and the constant term is consistent with results from Monte
Carlo simulations of the Ising model.
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